Cardiovascular Molecular Imaging

Albert J. Sinusas, M.D.
Professor of Medicine & Diagnostic Radiology
Yale University School of Medicine

Molecular Imaging Summit
2008
Molecular Imaging in Cardiovascular Disease:

- Imaging of Cardiac Metabolism
- Imaging of Neuronal Function
- Receptor Imaging
- Targeted Imaging of Biological Processes
 - Atherosclerosis, Vascular Remodeling, Thrombosis, Inflammation
 - Angiogenesis
 - Apoptosis, Necrosis
 - Post Infarct Remodeling
 - Heart Failure
- Imaging of Stem Cell Therapy
Risks of SCD Post-MI

NEJM 352:2581-2588, 2005
Selection Criteria for AICD Implantation

• MADIT-I: Pts with +EP studies for VT or nonsustained VT on Holter may benefit from the preventive insertion of AICDs
• MADIT-II:
 – Trial stopped early because of a 30% reduction in mortality in patients randomized to receive an AICD
 – Pts >1 mon post-MI with LVEF <30% are candidates for AICD implant regardless of whether they undergo Holter monitor or EP studies
• AICD implant costs $30,000-$40,000 and lasts for only 4-5 years
• 400,000 pts will qualify annually to receive AICDs at a prohibitive cost to Medicare and our health care system at large
Peri-Infarct Zone by Contrast-Enhanced Cardiac MR Imaging Predictor of Post-MI Mortality

- 144 pts with CAD and abnormal myocardial delayed enhancement (MDE)
- Mean follow-up 2.4 years, 20% mortality
- Computer-assisted quantification of infarct core and peri-infarct region
 - core: >3 SD above remote
 - peri-infarct: 2-3 SD above remote
 - Peri-infarct expressed % total infarct (%MDE_{periphery})
- %MDE_{periphery} strongest predictor all-cause mortality

Peri-Infarct Zone by Contrast-Enhanced Cardiac MR Imaging Predictor of Post–MI Mortality

Infarct Heterogeneity by MR Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility

- 47 pts post-MI referred for ICD
- LVEF <0.35
- Late (15-30 min) Gd enhanced images (0.2 mmol/kg)
- Subset with first pass perfusion (n = 8) with 0.1 mmol/kg
- Programmed ventricular stimulation
- Quantification of heterogeneity of SI using 2 thresholds
 - dense core (>50% max)
 - heterogeneous periphery (>remote, <50% max)
- Infarct transmurality defined for wedges

Quantification of Infarct Heterogeneity Using 2 SI Thresholds

Infarct Heterogeneity by MR Imaging Identifies Enhanced Cardiac Arrhythmia Susceptibility

- 43% inducible VT
- Infarct size not related to inducibility
- Gray zone extent associated with inducibility
- Wash-in kinetics in gray zone matched remote zone
- Large region of mixed tissue in border may provide substrate for reentrant VT

Imaging of Neuronal Function

- Neuronal function is impaired with myocardial ischemic injury
- Significant denervation post-MI
- Imaging of pre-synaptic uptake-1
 - 123I-MIBG
 - 11C-HED
- Prediction of ARhythmic Events with Positron Emission Tomography (PAREPET) – NIH sponsored
 - CAD, LVEF <35%, candidate for AICD, risk for SCD
 - 13NH$_3$, 18FDG, 11C-HED
- Industry sponsored trial of 123I-MIBG in CHF
MIBG Sympathetic Nerve Imaging Risk for Death in CHF Patients

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Sex (M/F)</th>
<th>Mean age (years)</th>
<th>Diagnosis (isch/nonisch)</th>
<th>Mean LVEF (%)</th>
<th>Follow-up (months)</th>
<th>Survival rate (%) (low risk/high risk)</th>
<th>P value</th>
<th>Criteria for high risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merlet</td>
<td>1992</td>
<td>76/14</td>
<td>52</td>
<td>24/66</td>
<td>22</td>
<td>27</td>
<td>98/16</td>
<td><.0001</td>
<td>H/M <1.20</td>
</tr>
<tr>
<td>Nakata</td>
<td>1998</td>
<td>271/143</td>
<td>61</td>
<td>131/283</td>
<td>49</td>
<td>22</td>
<td>95/85</td>
<td>.0002</td>
<td>H/M <1.74</td>
</tr>
<tr>
<td>Cohen-Solal</td>
<td>1999</td>
<td>55/38</td>
<td>55</td>
<td>24/69</td>
<td>25</td>
<td>10</td>
<td>70/30</td>
<td>.09</td>
<td>H/M <1.27</td>
</tr>
<tr>
<td>Momose</td>
<td>1999</td>
<td>52/7</td>
<td>51</td>
<td>0/59</td>
<td>28</td>
<td>24</td>
<td>71/19</td>
<td><.0001</td>
<td>WR >52</td>
</tr>
<tr>
<td>Wakabayashi</td>
<td>2001</td>
<td>62/14</td>
<td>68</td>
<td>76/0</td>
<td>32</td>
<td>54</td>
<td>83/56</td>
<td>.0358</td>
<td>H/M <1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43/13</td>
<td>60</td>
<td>0/56</td>
<td>30</td>
<td>55</td>
<td>86/51</td>
<td>.0321</td>
<td>H/M <2.2</td>
</tr>
<tr>
<td>Ogita</td>
<td>2001</td>
<td>64/15</td>
<td>64</td>
<td>45/34</td>
<td>29</td>
<td>31</td>
<td>100/64</td>
<td><.001</td>
<td>WR >27</td>
</tr>
<tr>
<td>Imamura</td>
<td>2001</td>
<td>125/46</td>
<td>63</td>
<td>75/96</td>
<td>27</td>
<td>27</td>
<td>98/15</td>
<td><.0001</td>
<td>WR >63</td>
</tr>
<tr>
<td>Matsui</td>
<td>2002</td>
<td>55/19</td>
<td>55</td>
<td>0/74</td>
<td>31</td>
<td>24</td>
<td>83/57</td>
<td><.05</td>
<td>H/M <1.89</td>
</tr>
<tr>
<td>Gerson</td>
<td>2003</td>
<td>27/10</td>
<td>48</td>
<td>0/37</td>
<td>27</td>
<td>49</td>
<td>92/28</td>
<td>.0042</td>
<td>H/M <1.54</td>
</tr>
<tr>
<td>Yamada</td>
<td>2003</td>
<td>51/14</td>
<td>63</td>
<td>41/24</td>
<td>28</td>
<td>34</td>
<td>85/38</td>
<td><.0012</td>
<td>WR >27</td>
</tr>
<tr>
<td>Nakata</td>
<td>2003</td>
<td>146/59</td>
<td>61</td>
<td>81/124</td>
<td>34</td>
<td>35</td>
<td>90/72</td>
<td>NA</td>
<td>HM <1.75</td>
</tr>
<tr>
<td>Kyuma</td>
<td>2004</td>
<td>110/48</td>
<td>64</td>
<td>45/113</td>
<td>41</td>
<td>16</td>
<td>98/70a</td>
<td>.006</td>
<td>HM <1.74</td>
</tr>
<tr>
<td>Nakata</td>
<td>2005</td>
<td>69/19</td>
<td>58</td>
<td>24/64</td>
<td>27</td>
<td>27</td>
<td>75/56</td>
<td>.006</td>
<td>H/M <1.53</td>
</tr>
</tbody>
</table>

| Total/mean | 1206/459 | 59 | 566/1099 | 31 | 31 | 87/47 |

H/M - delayed heart to mediastinal uptake ratio of MIBG; WR - washout rate = (early uptake-delayed uptake)/early uptake ×100.

Higuchi T & Schwaiger M. Heart Failure Clinics 2006
\(^{123}\)I-MIBG imaging and HRV analysis: Need for AICD

Approaches for Imaging LV Remodeling

- Assessment of function, geometry
- Assessment of ischemia
 - Perfusion, metabolism, hypoxia
- Assessment of injury
 - Infarction, apoptosis
- Assessment of inflammation
- Assessment of myocardial denervation
- Assessment of angiogenesis
- Assessment of extracellular matrix
LV Remodeling Changes in MMP-9

- Patients s/p acute MI (n=32)
- Control Subjects (n=53)

Targeted MMP Imaging
Hybrid MicroSPECT/CT

201TI
PERFUSION

99mTc-RP805
MMP

IMAGE
FUSION

Su H et al. Circulation 2005
^{99m}Tc-RP805 and ^{201}TI Myocardial Uptake (%ID/g) Control & Post-MI Mice

Role of MT-1 MMP on Post-MI Remodeling

- Wild type mice (WT): n = 14
- Mice with cardiac restricted overexpression of MT-1 (MT1-MMPexp): n = 22
 - 200% increase in MT1-MMP
- MI induced by LAD occlusion
 - WT (n = 8), MT1-MMPexp (n = 14)
- Echocardiography, conductance catheter studies
- Imaging at 2 wks post-MI
 - Injected with 99mTc-RP805 (1.3 ± 0.4 mCi)
 - Injected with 201TI (0.2 ± 0.1 mCi)
- Zymography, immunoblotting
Role of MT-1 MMP on Post-MI Remodeling

• Significant increased post-MI mortality
 - MT1-MMPexp: 56% at 2 wks
 - WT: 12% at 2 wks
 - cause of death:
 • rupture (10%), failure (50%)
• Severe LV dysfunction in MT1-MMPexp
• RP805 uptake increased in MT1-MMPexp mice
• RP805 uptake increased in infarct and remote regions 2 wks post-MI
• MT1-MMPexp mice had increased fibrillar collagen and hydroxyproline in MI and remote regions
• Levels of active form MT-1 increased 5-fold
Role of MT-1 MMP on Post-MI Remodeling

<table>
<thead>
<tr>
<th>Whole Heart</th>
<th>FVB (Wild-type)</th>
<th>MT1-MMP OE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Atria</th>
<th>RA</th>
<th>LA</th>
<th>RA</th>
<th>LA</th>
</tr>
</thead>
</table>

| Left Ventricle | | |
|----------------|---|---|---|---|
Role of MT-1 MMP on Post-MI Remodeling

RP805 activity

WT MT1-MMPexp

REM MI REM MI

RP805 Uptake (fraction of ID/g tissue)

0.000 0.002 0.004 0.006 0.008

p<0.05
Role of MT-1 MMP on Post-MI Remodeling

Gelatin Zymography

- **MMP-2 (72kDa)**
- **MMP-2 (64kDa)**
- **MMP-2 Total**
- **MMP-9 (92kDa)**

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>WT-MI</th>
<th>MT1</th>
<th>MT1_MI</th>
</tr>
</thead>
</table>

- Total proteins

- MT-1 MMP expression

- MT-1-MMP expression

- WT-MI comparison

- MT1-MMP expression

- MT1-MMP expression-MI
Role of MT-1 MMP on Post-MI Remodeling

- MMP-13 (63kDa)
- MT1-MMP (64/58kDa)
- TIMP-1 (28kDa)
- TIMP-2 (22kDa)

Graph showing the expression levels of MMP-13, MT1-MMP, TIMP-1, and TIMP-2 with asterisks indicating significant differences.

Wawosz Dobrucki
Surgical MI Yorkshire pigs: LCX occlusion
4 groups: 1 wk post-MI (n=6),
2 wk post-MI (n=5),
4 wks post-MI (n=5),
Control (n=5)
Targeted MMP Imaging
In Vivo SPECT

Control

2 Wks s/p MI

4 Wks s/p MI

99mTc-RP805 and 201TI Myocardial Uptake (%ID/g)

* p<0.05 vs. control; # p<0.004 vs 1 wk; p < 0.03 vs. 4 wk

99mTc-RP805 / 201TI SPECT

Canine MI Model

- **99mTc-RP805** - 225 min s/p injection
- **201TI** - 15 min s/p injection

Short Axis

- **201TI**
- **RP805**

Vertical LA

- **201TI**
- **RP805**

Horizontal LA
Hotspot Quantification

Figure:

- **Tl-201 (A)**
- **Tc-99m MMP (B)**

Graphs:

- **APICAL**
 - SPECT (%ID) vs Well Counting (%ID)
 - Equation: $y = 0.933x - 0.0007$
 - $r = 0.84$
 - $n = 12$

- **MID-VENTRICLE**
 - SPECT (%ID) vs Well Counting (%ID)
 - Equation: $y = 0.933x - 0.0007$
 - $r = 0.84$
 - $n = 12$

- **BASAL**
 - SPECT (%ID) vs Well Counting (%ID)
 - Equation: $y = 0.933x - 0.0007$
 - $r = 0.84$
 - $n = 12$

Note:

Min_A = 53% Max_B = 6%

Min_A = 80% Max_B = 4%

Yi-Hwa Liu
Cardiovascular Molecular Imaging Opportunities

- Application of neuronal imaging post-MI
 - 123I-MIBG
 - 11C-HED
- Availability of hybrid imaging systems will facilitate quantification of molecular imaging agents
- Molecular imaging could improve selection of pts post-MI for AICD
- Molecular imaging post-MI could predict post-MI remodeling and CHF, associated with SCD
- Facilitate personalized medicine and significantly reduce medical costs
Cardiovascular Molecular Imaging Challenges

- Majority of cardiac imaging done as outpatient
- Most cardiology practices have invested in and actively employ SPECT imaging
- Limited availability of 123I, need for 99mTc-labeled agents
- Equipment optimized for non-cardiac applications
 - inadequate corrections for cardiac and respiratory motion
 - lack of quantitative software for targeted agents
Cardiovascular Molecular Imaging
Promoting Utilization and Outreach

- Educational efforts with outreach to both basic scientists and clinicians in cardiovascular community
 - AHA, ACC, ASNC
- Encourage NIH support for funding in area of CV molecular imaging
 - 2009 NIH CVMI symposium
- Need for hybrid imaging systems for small and large animal translational research
- Optimization of imaging system to facilitate CV MI
- Standardization of imaging protocols and quantification schemes
Acknowledgement

- **Yale University – Experimental Nuclear Cardiology**
 - YiHwa Liu, Ph.D.
 - **Staff:** Donald Dione, Jennifer Hu, Patti Cavaliere, Christi Hawley, Chris Weyman, Donna Dione
 - **Post Doctoral Fellows:** Haili Su, Wawrzyniec Dobrucki, James Song, Zakir Sahul, Leszek Kalinowski, Matt Brennan, Suman Tandon, Choukri Mekkaoui
 - **Students:** Jodi-Ann McKain, Conroy Chow, Jarod McAteer
- **VAMC – Molecular Laboratory**
 - Mehran Sadeghi, M.D.
- **Yale Pathology**
 - Joseph Madri, M.D., Ph.D.
- **Medical University of South Carolina**
 - Francis Spinale, M.D., Ph.D.
 - Merry Lindsey, Ph.D.
 - Robert Stroud, Ph.D.
 - Rupak Mukherjee, Ph.D.
- **Yale University - Radiology**
 - James Duncan, Ph.D.
 - Lawrence Staib, Ph.D.
 - Todd Constable, Ph.D.
 - Xenophon Papademetris, Ph.D.
 - Marcel Jackowski, Ph.D.
 - Smita Sampath, Ph.D.
- **Bristol-Myers Squibb**
 - D. Scott Edwards, Ph.D.
 - Michael Azure, Ph.D.
 - Padmaja Yalamanchili, Ph.D.
 - Richard Liu, Ph.D.
 - Edward H. Cheesman, Ph.D.
 - Simon Robinson, Ph.D.
Conflict of Interest

• **NIH Grants:**
 - NIH-NHLBI: R01 HL078650
 - NIH-NHLBI: R01 HL65662
 - NIH BRP HL082640

• **Grant support:**
 - Bristol-Myers Squibb
 - GE Healthcare