William H. Blahd, MD

William H. Blahd, MD, a pioneering nuclear medicine physician and author of one of the first widely used textbooks in the field, as well as an honored figure in nuclear medicine education and research, died on March 6, 2011 from complications of polyneuropathy. He was born in Cleveland, OH, the son of Moses Emmett Blahd, MD, a prominent surgeon who studied in Vienna, Austria. After attending Western Reserve University (Cleveland) and the University of Arizona (Tucson), Blahd received his medical degree from Tulane University (New Orleans, LA) in 1945. He completed his internship at King's County Hospital (Brooklyn, NY) in 1946. From 1946 to 1948, he served as a captain in the U.S. Army Medical Corp. He completed residencies in internal medicine and radiology at the University of California (Los Angeles) (UCLA) Veterans Administration (VA) Center.

At the Wasserman, where he would remain and serve as a leader in nuclear medicine for more than half a century, Blahd became acquainted with Benedict Cassen. In 1952 Cassen assembled the first automated scanning system (made up of a motorized scanner control detector placed in a radiotherapy scanning technique). The scanner and its later revisions led to the now familiar computerized tomography scanner (CT). Blahd's work was championed by Blahd, who was among a small group of physicians who contributed initial studies with the first generation of nuclear scanners. In a rare stroke of immense generosity, Blahd endowed the Nuclear Medicine program, and Blahd's endowment and reports on its initial use offered guidance for physicians who began to integrate its use into their practices throughout the world.

In 1972, Blahd received his board certification in nuclear medicine by studying his own textbook for what was then the first nuclear medicine board examination for the American Board of Nuclear Medicine (ABNM). He would go on to serve in numerous positions on the board, including chair (1982-1983) and executive director (1991-2004). He was a Life Member of the ABNM.

After serving on numerous committees and as president of the Southern California SNN Chapter, Blahd was elected president of SNN in 1977. Among many other initiatives he promoted in this period, he undertook, with the assistance of his wife, Mitzi, to recognize the society's Education and Research Foundation (ERF), with a goal of supporting the development of nuclear medicine and nuclear medicine technology through grants and fellowships.

A major breakthrough occurred in 1990, when the Blahd's won the support of Cassen's widow, Mary Wylie Cassen, who named a grant to honor her husband. "The greatest single product of the Blahds' philanthropy was the establishment of the Blahd-Bachenek Chair of Nuclear Medicine," said Dr. T. Stephen Cassen, director of the nuclear medicine service at the University of Texas Health Science Center at Houston.

Blahd's contributions to the University of Texas Health Science Center were recognized in 1997 when the College of Natural Sciences at the University of Texas at Austin named the E. and M. Blahd Professorship in Nuclear Medicine. In 1997, Dr. Blahd was named to the Hall of Honor Award from the College of Natural Sciences at the University of Texas at Austin. He served as chair of the Committee on Nuclear Medicine for the Texas Medical Association and became an active member in SNN, serving on numerous committees, as a member of the board of trustees, and as president in 1992 and 1993.

R. Edward "Ed" Coleman, MD

R. Edward "Ed" Coleman, MD, a pioneer in the development of PET and a visionary leader in its translation to routine clinical use, died on June 25, 2012 in Durham, NC. He was born in Otwell, IN. He received his bachelor's degree from the University of Evansville (IN) and his medical degree from Washington University (St. Louis, MO), where he also completed an internship in internal medicine. After residency at the Royal Victoria Hospital (Montreal, Canada), he returned to St. Louis in 1972 for a fellowship in nuclear medicine at the Mallinckrodt Institute of Radiology.

While at Mallinckrodt, he collaborated with Michel Ter-Pogossian, PhD, and a team of physicians, physicists, chemists, and computer scientists in the development of PET technologies. Coleman was a full participant in the broad array of activities surrounding early PET work at Mallinckrodt, including cyclotron technologies, scanner design and testing, investigation of novel radiopharmaceuticals, and acquisition of early images in animals and humans. Throughout the years, Coleman maintained a focus on PET, promoting hybrid integration with other modalities and providing appropriate clinical applications for PET/CT. This involved a tireless collaboration with academia, industry, and government.

He was instrumental in establishing the National Oncologic PET Registry that facilitated greatly expanded medical coverage of PET in the U.S. In 2002, 20 years ago, Coleman identified in Nucleon the key challenges to be overcome before PET could become widely used (and reimbursed) in clinical imaging: (1) improved tomographic hard- and software; (2) automation of cyclotrons and reliable production of PET radiopharmaceuticals; (3) generation of clinical data validating the benefits of PET; and (4) clarification of the role of PET in clinical decision making. This was a monumental task that would take several years, and he personally led efforts on each of these fronts. His work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 1991 remain true today: "Clinical PET is the epitome of the translation to clinical practice of work that he personally led efforts on each of these fronts. His words in 19
Howard J. Dwarkin, MD

Howard J. Dwarkin, MD, a leader in nuclear medicine education and a past president of SNM, died on January 27, 2012 in Royal Oak, MI. He was an internationally recognized authority on quality and planning issues associated with the continuing medical education (CME) process.

Dwarkin was born in Brooklyn, NY. He received an undergraduate degree in chemical engineering from Worcester Polytechnic Institute (WPI) in 1955 and his medical degree from Albany Medical College (NY) in 1959. During his internship at Albany Hospital (1959–1960) and residency at Rochester General Hospital (NY, 1960–1962), he trained in internal medicine. It was during his time at Rochester that he saw a notice on a bulletin board about a research fellowship at the University of Michigan (UM). At Michigan, William Beierwaltes, MD, was heading up an active group of nuclear medicine physicians and had co-authored the first textbook of nuclear medicine practice. Dwarkin went to UM in 1962 and, although his teaching associate and third-year residency positions were nominally in internal medicine, he pursued his interests in nuclear medicine. From 1963 to 1965 he held a fellowship in cancer research at the UM Medical Center, earning a master’s degree in radiation biology during the same period.

After a year in Toronto, Canada, as head of nuclear medicine and associate professor at the Princess Margaret Hospital, Dwarkin was drafted in 1967 during the Vietnam War. As a naval commander, he served as head of nuclear medicine in the Department of Radiology at the National Naval Medical Center in Bethesda, MD, from 1967 to 1969. He participated in a new program designed to train technologists in working with isotopes in diagnosis and therapy. The program would evolve into the Nuclear Medicine Technologist Training Program at Fort Meade, MD, and would spur the establishment of a number of other military educational efforts in nuclear medicine.

After leaving the military, Dwarkin went to the William Beaumont Hospital, where he chaired the Department of Nuclear Medicine at the Royal Oak, MI, facility from 1969 to 2002 and in the Troy, MI, location from 1981 to 2001.

In addition to his presidency of SNM (1986–1987), Dwarkin served as president of the American College of Nuclear Physicians (1978 and 1979), chair of the American Board of Nuclear Medicine (ABNM) Committee on Certifying Examinations (1983). He was active in the Education and Research Foundation of SNM and served as the society’s representative to the American Medical Association Section Council on Nuclear Medicine. He was also appointed to the Council of Medical Specialty Societies and the Accreditation Council for Continuing Education (ACCME) during years in which plans for today’s enhanced continuing medical education requirements were being made. He was the 1998 chair of ACCME.

Alexander Gottschalk, MD

Alexander Gottschalk, MD, died peacefully on October 5, 2010 at the age of 78, after a 5-y battle with prostate cancer. Alex was born in Chicago, IL, in 1932 to illustrious parent educators. Alex received his magna cum laude baccalaureate degree from Harvard in 1954 and his medical degree in 1958 from Washington University of St. Louis, where he was elected to Alpha Omega Alpha. He returned to Chicago for an internship at the University of Illinois and a radiology residency at the University of Chicago, which he completed in 1962.

In 1967, he became director of the Argonne Cancer Research Hospital (later known as the Franklin McLean Institute), where he collaborated with such luminaries as Paul Harper, MD, Katherine Lofquist, and Robert Beck. Among other groundbreaking efforts, Alex worked closely with Hal Anger, the developer of the scintillation camera that bears his name and remains the primary imaging instrument in today’s clinical nuclear medicine practice. Lending his clinical expertise and ingenuity to Anger, the pair produced seminal images of the heart, kidneys, and brain.

In 1974 to Yale University (New Haven, CT) as director of the nuclear medicine section. There, working with Barry Zaret, MD, he set up a pioneering cardiovascular nuclear medicine clinical and research service. He moved to Michigan State University (East Lansing) in 1990. Alex maintained a career-long interest in nuclear medicine techniques to assess pulmonary embolism and was closely involved in the Prospective Investigation of Pulmonary Embolism Diagnosis (PIOPED) studies, serving as chair of the nuclear medicine working group for PIOPED I, II, and III.

The awards Alex received for his brilliant and innovative work were numerous. One of the first (of which he was always quite proud) was an honorary fellowship in 1978 in one of America’s “26 outstanding young men” by the United States. He received joint fellowships of the Harvard Society Radiologists and the Radiological Society of North America. He held board certifications from the American Board of Radiology in both general radiology and special competence in nuclear radiology and the American Board of Nuclear Medicine. He served as president of the Association of University Radiologists (1969–1971), the Society of Nuclear Medicine (1974–1975), and the American Society for Nuclear Medicine (1984–1986).

Alex Gottschalk was one of our great nuclear medicine pioneers. Many of his contributions have evolved into elements of routine everyday practice in nuclear medicine. He will be missed by many.

Paul V. Harper, MD

A pioneer in the diagnostic and therapeutic uses of radiation and the development and testing of radioisotopes in the early days of nuclear medicine, Paul V. Harper, MD, professor emeritus in the departments of surgery and radiology at the University of Chicago, died in Evanston, IL, on July 15, 2005, from pneumonia after suffering complications of diabetes. He was 89.

Along with Alexander Gottschalk, MD, Harper developed the first clinical techniques for using 99mTc, including virtually all applications except bone imaging. Much of this was done before the tracer was available to the medical community at large.

Harper performed the first thallium heart scan on himself using 99mTc. Harper and Gottschalk, working closely with Hal Anger, the developer of the scintillation camera that bears his name and remains the primary imaging instrument in today’s clinical nuclear medicine practice, produced seminal images of the heart, kidneys, and brain.

Harper performed the first thallium heart scan on himself using 99mTc. Harper and Gottschalk, working closely with Hal Anger, the developer of the scintillation camera that bears his name and remains the primary imaging instrument in today’s clinical nuclear medicine practice, produced seminal images of the heart, kidneys, and brain.

Harper published nearly 200 book chapters and research articles and more than 200 research abstracts. He was honored with the De Neve Nuclear Pioneer Award twice—in his own right and second as a member of the Founding Board at his close friend Paul L. Harper, MD, who accepted the award on his behalf. He was a past president of the Council of Nuclear Medicine Technologists, a member of the Society, president of the Central Chapter (1967–1969), and an influential member of long standing on the International Commission on Radiological Units and Measurements.

Paul V. Harper, MD, professor emeritus in the departments of surgery and radiology at the University of Chicago, died in Evanston, IL, on July 15, 2005, from pneumonia after suffering complications of diabetes. He was 89.

Along with Alexander Gottschalk, MD, Harper developed the first clinical techniques for using 99mTc, including virtually all applications except bone imaging. Much of this was done before the tracer was available to the medical community at large.

Harper performed the first thallium heart scan on himself using 99mTc. Harper and Gottschalk, working closely with Hal Anger, the developer of the scintillation camera that bears his name and remains the primary imaging instrument in today’s clinical nuclear medicine practice, produced seminal images of the heart, kidneys, and brain.

Harper published nearly 200 book chapters and research articles and more than 200 research abstracts. He was honored with the De Neve Nuclear Pioneer Award twice—in his own right and second as a member of the Founding Board at his close friend Paul L. Harper, MD, who accepted the award on his behalf. He was a past president of the Council of Nuclear Medicine Technologists, a member of the Society, president of the Central Chapter (1967–1969), and an influential member of long standing on the International Commission on Radiological Units and Measurements.
A nuclear medicine pioneer whose ground-breaking research led to major medical advances, especially in blood cell labeling, died on July 26 in Baltimore, MD, from complications of hypertension and respiratory failure. Among his many achievements, he cofounded the first nuclear medicine facility at Johns Hopkins Hospital in Baltimore in 1959. To honor his significant contributions to nuclear medicine and research, the Radiological Society of North America (RSNA) presented him with its highest scientific award, the Gold Medal, in 1983.

John G. McAfee, MD

Powell “Jim” Richards

Powell “Jim” Richards, who lived in Greenville, NC, died quietly in his sleep on April 8, 2010 from complications of a series of strokes. Jim retired in 1993 from the U.S. Department of Energy (DOE) Brookhaven Nuclear Laboratory (BNL), where he had worked as a nuclear physicist since 1968. He specialized in the development and promotion of radionuclides, including 99mTc (Tc) and radionuclides with rectilinear scanner.

His research led to the development of 99mTc-labeled radiopharmaceuticals, blood cell–labeling kits, 201Tl, 123I, 127Xe, 67Cu, 117mSn, and many other radionuclides. For a number of these developments the credit goes mainly to Jim Richards. He was honored in 1998 by the American Medical Association (AMA) with the Paul C. Aebersold Award. Other honors included the Herrmann L. Blumgart Award from the New England Chapter of SNM and the Johns Hopkins Alumni Award in Nuclear Medicine. Many of his colleagues have noted that he was an excellent clinician and a very compassionate human being.

He was named most frequently cited author of papers in Radiology for the years 1955–1986. A prolific writer, he was the author or coauthor of more than 200 papers, book chapters, and abstracts. He held more than 20 U.S. and Canadian patents for bone-seeking 99mTc complexes and 99mTc-labeled insidiosiphonophores.

In addition to his gold medal award from the RSNA in 2004, he delivered the Diamond Jubilee lecture of RSNA in 1989. The SNM honored him with the George Charles de Hevesy Nuclear Medicine Pioneer Award and the Paul C. Aebersold Award. Other honors included the Herrmann L. Blumgart Award from the New England Chapter of SNM and the Johns Hopkins Alumni Award in Nuclear Medicine. Many of his colleagues have noted that he was an excellent clinician and a very compassionate human being.
Henry N. Wagner, Jr., MD

Henry N. Wagner, Jr., MD, a pioneer in nuclear medicine and international leader in the field for more than half a century, died on September 25 at his Baltimore home. Wagner retired from his career spanning professorship at Johns Hopkins Hospital (Baltimore, MD) in 1995 but remained active in his emeritus status as a vigorous contributor to the nuclear medicine community. His achievements, which were recognized by numerous awards and honors, included not only basic and clinical science "firsts" but a distinguished record of publication, presentation, education, and outreach.

Wagner initially worked with John G. McAfee, MD, at Hopkins in the 1950s on studies with a range of early radiolabeled agents and scanning devices. In 1962 and 1963 they published pioneering studies on the use of 203Hg-chlormerodrin for renal imaging. In 1963 they also first used radiolabeled albumin aggregates for imaging lung perfusion in healthy individuals and patients with primary emboli. Five years later Wagner and colleagues built on previous work to publish groundbreaking studies on the use of 133Xe ventilation scans to diagnose pulmonary embolism. Wagner was perhaps most widely known for his early contributions to PET imaging, having arrived in 1983 as the first human test subject for PET imaging of dopamine and opiate receptors in the brain. The images acquired in these experiments are widely acknowledged to have influenced a new generation of research into the early brain's physiology and pathophysiology.

He was also a vigorous advocate for advanced diagnosis and understanding in cardiology. In addition to the wide focus of his investigations, he served as a durable and reliable advocate for nuclear medicine on the larger scientific stage, writing numerous stewardship reviews for publications such as The Journal of the American Medical Association and the New England Journal of Medicine.

He was president of the American Federation for Clinical Research (1953), SNMMI (1970–1971), the World Federation of Nuclear Medicine and Biology (1975–1978), and the Johns Hopkins and Baltimore City Medical Societies (1978–1980). His lifetime achievement was recognized by many awards, including the Henry awards of both the European Association of Nuclear Medicine (1976) and SNM (1985), the first Sir Rowland Hill gold medal awarded by the Society of Nuclear Medicine in India (1972), the American Medical Association's Scientific Achievement Award (1991), and the first annual SNM President's Award for outstanding Contributions to Nuclear Medicine (1993). He also founded what is today the SNMMI Wagner–Torizuka Fellowship, which provides dedicated training to Japanese physicians in early stages of their careers.

In his many roles as leader, investigator, counselor, and mentor, Wagner embraced innovation and encouraged independent thinking. In his memoirs, he advised young readers with an interest in science: "Do not think as you are told, and do not do as others do according to the rules." His own creative and independent adherence to these maxims helped to define the development of nuclear medicine from its earliest years through its 21st-century transition to molecular medicine.

Susan C. Weiss, BS, CNMT

Susan C. Weiss, BS, CNMT, whose productive career in nuclear medicine spanned 44 years and included many groundbreaking achievements, died on July 19, 2009 from pancreatic cancer. She was a pioneer of nuclear medicine procedures and techniques for children and a noted mentor, teacher, and organizer in several generations of nuclear medicine technologists (NMTs).

Susan began her career in the field by training with Merle Loken, MD, at the University of Minnesota (St. Paul) in 1965 and 1966, followed by work as a staff technologist at Harborview Memorial Hospital (Seattle) from 1967 to 1994. In 1969 and at the Albert Einstein Medical Center (Philadelphia, PA) from 1969 to 1971. In 1971 she went to the Children's Hospital (Baltimore, MD), where she served as the hospital's radiation safety officer (RSO) for most of three years. She was the first practicing NMT to be certified by the Nuclear Regulatory Commission as an RSO.

In 1967, CEM had acquired the first Anger gamma camera to be installed in a pediatrics hospital. Susan rapidly adapted the adult technology and techniques to the needs of children. One of her first publications was a booklet on pediatric techniques. She also began using the technique of direct radioisotope cisternography that had been developed worldwide and used in the first prospective pediatric dosimetry determinations for 99mTc-MAG3. Numerous other investigations and pediatric applications in which she participated included pinhole dacrocystography, thallium SPECT imaging of the heart in Kawasaki disease, early use and promotion of 99mTc-labeled agents for diagnosis of pyelonephritis in infants, substitution of the mechanism of egg–Perthes disease for gamma–Perthes disease and creation of an early staging protocol that accurately predicts outcomes in this disease, documentation of hepatic morphology at 19F Magnetic Resonance Imaging, and microangiographic techniques for brain death and microtechniques in radiosynovectomy using minute blood specimens from newborn infants.

She was most noted on the national and international nuclear medicine scene for her extraordinary energy and accomplishments in mentoring NMTs. She was a founding member of the Nuclear Medicine Technology Certification Board and worked with other NMT pioneers in creating a solid certification process for nuclear medicine technology. As a director of the Associated Sciences Consortium for the RSNA, she planned their yearly educational programs and developed the day-long educational programs for the RSNA annual meeting for several years.

She initiated the reorganization of the Education and Research Foundation’s (ERF) of SNM into a cooperative alliance made up of the ERF as a parent entity and the SNM and SNMMTS. She presented a concept aimed at creating a cooperative alliance with shared governance and representation. After many summit meetings, a strategic alliance was signed and implemented. She would go on to be the executive director of the ERF, where all areas of nuclear medicine would benefit from her unique combination of far-sighted strategy and attention to detail.

Susan also broke traditional barriers for women and technologists. She was the first woman elected president of the SNMMTS, the first woman and first technologist elected president of the ERF, and the first women and first technologist elected president of the Central Chapter (the largest chapter) of SNM. She served on the Central Chapter’s board of directors for 24 y. She was elected as speaker of the National Commission for Health Care Quality by the Certification Agencies general assembly in 1981 and served on the executive council from 1981 to 1984.

Her primary professional goal was to ensure that the relationships among the various groups in the field—NMTs, physicians, physicists, and others—continued to prosper and grow.

There are so many things to remember about Sue in her short stay with us. We will each remember Sue in our own way. Sue was a caring, challenging, lovable, considerate, strong, and intelligent woman who impacted our lives immensely as a loyal friend and colleague. We will miss her terribly.
In recognition of these contributions, the Nobel Prize in Medicine and Physiology was awarded to Yalow in 1977. It is not possible heretofore un-measurable substances in health and disease. Substances in less than a drop of plasma. Working together, with only an occasional junior associate, they characterized the role of other materials of biologic interest. Most remarkably, they could detect with great sensitivity and precision the amount of such identifying unique characteristics of other peptide hormones, the duo went on to develop assays for human growth hormone and “Immunoassay of Endogenous Plasma Insulin in Man” in the Journal of Clinical Investigation. Using the same principle but variety of subjects. They observed that radiolabeled insulin was cleared from the blood more slowly in individuals who had received insulin injections previously. They deduced that the slower clearance was related to insulin antibodies, an idea that was considered heresy at the time. Moreover, they quantified the binding phenomenon. Yalow and Berson recognized that the quantitative medicine. Their initial investigations were in the application of radionuclides in blood volume determination and the kinetics of systems (as distinct from organic synthesis) to make imaging agents. A prime example was the photosynthetic production of 11C-glucose by Swiss chord leaves (with a final “drug” product that was grown from the chlorophyll synthesized along with the glucose). His success in these efforts lay in his ability to see beyond the immediate physical and chemical aspects of basic work to potential future applications and then to reach out and generate cooperative interest and participation from across the widest spectrum of specialties. His unique approach to scientific creativity embraced the need to involve others in looking for practical applications of novel radiolabeled agents.

Yalow’s enthusiasm for his research and his ability to make vital connections with other disciplines made him a notable and beloved educator. The list of individuals who trained with him as graduate students and postgraduate fellows includes the names of some of the most noted individuals in molecular imaging today and likely the names of others who will one day become leaders in the field.

He was recognized with honors and awards too numerous to mention in this limited space. He was elected to the Institute of Medicine in 1997 and received many of his field’s highest honors. SNM alone awarded him its highest honor—the Paul C. Asbury Award (1980), the Berson–Yalow Award (twice, in 1988 and 1990), the Georg Charles de Hevesy Nuclear Medicine Pioneer Award (1992), and the Benedict Cassen Prize in 2004. In 2008, SNM named a new award for outstanding contributions to radiopharmaceutical research in his honor.

Rosalyn S. Yalow, PhD
On May 30, 2011, after a decade and a half of physical and cognitive decline, Rosalyn S. Yalow died, just before her ninetieth birthday. A brilliant scientist who was dedicated to finding truth regardless of the personal sacrifice it demanded and at the same time a warm human being who was intensely dedicated to her teenage son and daughter—as well as the occasional young physician who was invited to work in the lab or, as it came to be known, the “Radioisotope Service.”

Rosalyn Susan was the child of an immigrant from Germany and a forgivenatem American. She was a good student who developed an early interest in mathematics and science. She graduated from Hunter College with a major in physics, an unusual area of interest for a woman at that time. After overcoming several obstacles, she was accepted as a graduate student in physics at the University of Illinois, where she met and married another physics student, Aaron Yalow. After receiving their PhDs in 1945, they moved to New York, where Aaron became a medical physical at the Montefiore Hospital while Roz volunteered to work with Edith Quimby at the Columbia College of Physicians and Surgeons. Quimby introduced Roz to Giovanni Failla, DSc, who has been characterized as the dean of American medical physicists. Failla recommended that Bernard Roswit, MD, chief of radiation oncology at the Bronx VA Hospital, hire Roz as a part-time medical physicist to start a radioisotope service. This job would soon evolve into a full-time position. She was joined early on by Solomon Berson, MD, who had completed his residency in internal medicine. Their initial investigations were in the application of radionuclides in blood volume determination and the kinetics of insulin metabolism.

Yalow and Berson were soon recognized as outstanding investigators, and their early manuscripts are classics in clinical investigation. They turned their attention to understanding insulin physiology by labeling insulin and studying plasma kinetics in a variety of subjects. They observed that radiolabeled insulin was cleared from the blood more slowly in individuals who had received insulin injections previously. The finding of insulin antibodies had been made by several investigators but had not been confirmed. Yalow and Berson replicated their experiment and then went on to look at other substances. For example, they showed that antibodies to plasma proteins could be seen in patients with liver disease.

In recognition of these contributions, the Nobel Prize in Medicine and Physiology was awarded to Yalow in 1977. It is not possible in the limited space available to review the impact that the development of radioimmunoassay has had on virtually every field of medical science.