Radiopharmaceutical Name

11C-choline chloride, [11C]choline chloride
Abbreviations: [11C]CH

Radiopharmaceutical Image

Normal Biodistribution

After IV injection, 11C-choline rapidly clears from the circulation (<3 min), with high clearance by liver and kidneys. Highest normal tissue uptakes are seen in renal cortex, liver, pancreas, salivary glands, variable bowel uptake, prostate, and pituitary gland. Low normal uptake is seen in cerebral cortex.

Image provided by Dr. Val Lowe, Mayo Clinic

Radiopharmaceutical Structure

![Chemical Structure of 11C-choline chloride](image)

Radionuclide

11C
Half-life 20.4 minutes

Emission

Emission positron: Emax 0.970 MeV

MICAD

Molecular Formula and Weight

11C-choline chloride
139.62 g atom mole⁻¹

General Tracer Class

Clinical Diagnostic PET Radiopharmaceutical

Target

The target is neoplasms, particularly prostate cancer and brain tumors.

Molecular Process Imaged

Various neoplasms have upregulated choline transport and phosphorylation. 11C-choline is taken up by the tumors and phosphorylated by choline kinase to form phosphorylated 11C-choline which is essentially trapped within cells. Slow metabolism to phospholipids also contributes to the signal, although the extent is minimal within the short time frame of the PET scan.

Mechanism for in vivo retention

Metabolic trapping in the cell in the form of phosphorylated 11C-choline

Metabolism

Choline is phosphorylated by choline kinase and incorporated into various phospholipids in the body. In certain tissues, including kidney and liver, choline oxidation is prominent. The oxidative metabolite of choline is betaine. Betaine is excreted into the urine.

Radiosynthesis

11C-choline is synthesized by 11C-methylation of dimethylethanolamine (DME) in acetone, followed by solid phase extraction isolation of the product from DME on a cation-exchange cartridge. The cartridge is rinsed with ethanol to remove residual DME before elution of the product with sterile saline through a sterilization filter.

Availability

Due to the short half-life, it must be delivered within 2-3 half-lives from a producing cyclotron. Requires a site with an IND, NDA or ANDA filed with the Food and Drug Administration (FDA) for the radiopharmaceutical (IND = investigational new drug application, NDA = new drug application, ANDA = amended new drug application).
Status with USP / EuPh

An NDA was approved by the FDA in 2012 (NDA #203-155, Mayo Clinic). Status in US is the same as other PET radiopharmaceuticals (requires an IND, NDA or ANDA for use).

Recommended Activity and Allowable mass

DOSAGE AND ADMINISTRATION (Ref. Mayo Clinic NDA)

IV administration, typically 370-740 MBq (10-20mCi) as a bolus.

Dosimetry

The effective dose (ED) is estimated to be 0.0040±0.0003 mSv/MBq (0.0148 rem/mCi) for adults. The dose-critical organ is the liver in adults, which receives 0.0131±0.0015 mGy/MBq (0.0485 rad/mCi) for adults.

Pharmacology and Toxicology

Pharmacokinetics: After intravenous injection, 11C-choline is rapidly cleared from the blood stream ($T_1/2 < 1$ min).

Distribution: 11C-choline distributes mainly to the pancreas, kidneys, liver, spleen and colon. Based upon the relatively low urinary excretion of radioactivity, renal distribution is predominantly to the organ itself, rather than via formation of urine.

Metabolism: Following intravenous administration, 11C-choline undergoes metabolism resulting in the detection of 11C-betaine as the major metabolite in blood. In a study of patients with prostate cancer or brain disorders, the fractional activities of 11C-choline and 11C-betaine in human arterial plasma appeared to reach a plateau within 25 minutes, with 11C-betaine representing 82% ± 9% of the total 11C detected at that time point. A small amount of unmethylated 11C-choline was detected within the blood at the final sampling time point (40 minutes).

Elimination: Urinary excretion of 11C-choline was < 2% of the injected radioactivity at 1.5 hours after injection of the drug. The rate of 11C-choline excretion in urine was 0.014 mL/min.

Toxicology: Choline is a natural compound with no known toxic effects at levels present in the 11C-Choline injection. Long term studies have not been performed to evaluate the carcinogenic potential of 11C-Choline.

Current Clinical Trials

The NIH clinical trials registry (www.clinicaltrials.gov) should be consulted for a list of current trials using 11C-choline.

Reference Site / Person

The best reference at this time is Dr. Joseph Hung, Mayo Clinic. jhung@mayo.edu

Imaging Protocol

The imaging protocol for 11C-choline can vary, but typically the procedure used is:

- On day before exam patient to drink 48 oz of water. On day of exam, 4 hr fast and drink 24 oz of water
- 370-740 MBq (10-20mCi) as a bolus through a catheter inserted into a large peripheral vein.
- Positioning of the patient on the imaging table:
 - Patient supine, head first, head in head holder
 - Arms elevated over the head for all procedures unless otherwise specified
 - Metallic objects should be removed from the patient whenever possible
- Scan Range:
 - Routinely from ischial tuberosity to the base of skull, unless otherwise specified
 - Make sure that the multiple CT reconstructions cover the same range
- Scan direction for PET:
 - Inferior to superior
 - Start imaging 2 minutes after the injection and acquire images for a total of 10-20 minutes in 2- or 3-D mode with 2–5 min per bed position depending on PET camera.

Human Imaging Experience

Listed below are selected references for 11C-choline injection.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

SNMMI would like to acknowledge Timothy R. DeGrado, PhD for his contributions to developing this content.